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Abstract

We present a new family of kernel density estimators that emerge from variational optimal
transport of statistical divergences(entropies). The optimal transport framework allows us
to unify three seemingly di�erent density estimation techniques(kernel density estimation via
difussion, cross-entropy method and a variational approach to maximum penalized likelihood
estimation) into a joint formalism. The various optimal transport kernel estimators combine
the advantages of each technique and provide a great �exibility on what properties we might
want to give to the estimation. In this document we present the theoretical foundations of the
framework and some elementary properties of the estimators.
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1 Introduction

The notion of entropy is ubiquitous now in many scienti�c disciplines, all the way from biology to mathe-
matics. Introduced initially for the problem of information transmission, it is now one of the foundations
of signal processing. In the context of geometry and image processing, the notion of entropy is usually only
explored in compression or sampling, only recently entropic methods taking advantage of the geometry of
images and shapes have been explored to exploit this additional structure to solve di�erent tasks. In this
document we discuss and propose entropic methods and their consequences in geometry, image processing
and statistics.

We start by giving the foundations for each of these methods, where we stress on the fundamental
intuitions behind the speci�c notion of entropy utilized by each of the numerical methods. Each of the
entropies make sense in a particular context, and allow in di�erent ways to quantify the concept of uncertanty
of a probability distribution over an alphabet. In our case we explore di�erent frameworks to solve several
tasks relevant to statistics, geometry and image processing.

Figure 1: Experiment of gas of molecules di�ussing. The molecules start at a corner of a box at an intial
state t0, then when released their properties evolve according to the dynamics of the system, as shown in
time t1. After a long time t∞ it is reasonable to assume the velocities and position in the gas has been
randomized.
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2 The Phenomena of Difussion

It turns out that for many current methods involving entropy in image and geometry processing, the notion
of di�usion is of fundamental importance. In some sense, this is not a surprise, since at its most basic
the physical phenomena of heat difussion is an irreversible process, and we know from the second law of
thermodynamics [67], physical entropy behaves irreversibly as it only increases towards the future.

More intuitively we can interpret this process in a stochastic sense following [67, 79] we can consider the
experiment of setting up bunch of gas molecules in the corner of a box [39], then when we release them, they
would spread out(di�use) all over the box, Figure 1. In the following sections we explain this experiment
using di�erent complementary notions that aim to put the concept of physical entropy in a intuitive way
in order to understand the motivations for the numerical methods. For a comparisson between these and
classical thermodynamic interpretations see [67].

2.1 Information-Computation interpretation

We explore this experiment in two complementary ways, both related with entropy, �rst in the sense of
classical information theory[68] and the second is to think as the evolution as a computation[79].

2.1.1 Information Interpretation

This interpretation consists in realizing that monitoring the exact state and interactions(�ne-grain prop-
erties) of every molecule requires an enormous amount of work. In practice we cannot know the exact
trajectory of all molecules, we have a limited resolution(experimental uncertanty) of position and velocity,
hence we are constained to group particles properties in regions(coarse-graining). E�ectively if we divide
the e�ort of track the particles properties by �rst identi�ng if they lie in a region and then �nding where
exactly they are within the region, Figure 2, we still have complete information about the system.

Clearly we require much less e�ort to only do the coarse graining, hence if we ignore the �ne-grain
properties, we still have a good approximate idea of what is happening. This is the key idea, unless we
have the capacity to always track the �ne-grain properties of the system we have to be satis�ed with a low
resolution view of the world. The proccess of information loss by coarse-graining increases our amount of
incertitude or entropy, hence every time we coarse-grain our entropy is bound to increase.

If we monitor the system only in this approximate way, at each time-step we will have a more and more
distorted view of the real dynamics until the point where the approximate dynamics is so distorted that is
better to describe the system in a global or averaged way(thermodynamic state), in some sense this is the
reason why at after a long time of not knowing anything about the system the best guess is to consider
the position and velocity of the molecules of the gas as random1. Since our amount incertitude or entropy
is maximum, the best idea is to assume nothing about the system. From now on we would refer to this
entropy as Shannon entropy. Interestingly, when we say that a whole room temperature is 21°C we are
e�ectively ignoring the variation of temperature in the room and then claiming that the distribution of
molecules in a room is Boltzman distributed and that its average energy or global temperature is 21°C.

1This does not mean that the molecules would never attain a �ordered� con�guration at a certain point on time, in
fact the Poincare Recurrence Theorem [39, 38, 1], states that a determinstic system would eventually arrive arbitrary
close to its initial condition(it might take millions of years[71]). The randomness is not a property of the system, it
is only the consequence of a very coarse modeling of the physical system generated by a uncompetent observer.
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Figure 2: Experiment of gas of molecules di�ussing. The molecules start at a corner of a box, then when
released we monitor their �ne grain properties. By grouping nearby molecules in regions, we decide if we
want to monitor the exact properties of the region. If we don't monitor them anymore, e�ectively we have
lost track of the �ne-grain information of each molecule. After a large time has passed t∞ , the approximate
dynamics are so distorted that our best guess is to assume the gas is essentially in a random state.

2.1.2 Computation Interpretation

The second interpretation consists in considering the evolution of positions and velocities of the molecules
as a computation, more speci�cally as an encryption process(e.g. a hash function f that takes as input
the positions and velocities at t0 and outputs positions and velocities at t1), we can think that the initial
positions and velocities have been encrypted via an unknown procedure. After this procedure an attacker
that wants to break the encryption has a restricted toolset starting from the output(velocities and positions
at t1), he can try by guessing randomly a decryption process that would lead him to the initial conditions,
or if he knows the dynamical laws he can guess some initial conditions such that by evolving the phys-
ical system, they would lead him to the current conditions(essentially the physical representation of the
veri�cation notion NP problem [20]).

In some sense this decryption procedure amounts to a lossy decompression procedure, where we start
at a state with very little information(lots of incertitude or Shannon entropy) about the position and
velocity(starting as random) and then we arrive to a simpli�ed or compressed representation, i.e. the initial
condition plus the rules of the evolution of the physical system allow us to recover the full state of the
system, in particular the positions and velocities at t1. This analogy can be developed much further, and
in fact it is highly relevant for many methods of random number generation by dynamical systems, the
bedrock of many cryptographic algorithms[49]. In the following table we mention some of the simmilar
properties of both frameworks,
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Hash Functions Dynamical Systems

Deterministic (Discrete) Deterministic
(Continious)

Quick to compute Hash Value from
Message (Low Complexity)

Run the system Forward
(Time Evolution)

Infeasible to �nd two di�erent Messages
with the same Hash Value (Collision)

Fine-Grain vs
Coarse-Grain

(Limited Resolution)

Small change to a Message should
extensively change the Hash Value

(Avalanche)

Chaos
(Sensitivity on Initial

conditions)

Infeasible to generate a Message given
Hash Value (Intractability)

Second Law of
Thermodynamics
(Irreversibility)

Table 1: Comparison of Properties for Hash functions and Dynamical Systems

Figure 3: Experiment of gas of molecules di�ussing. We only care about the state data at t0, and then in time
t1. We can map the data at time t1 into a compressed representation t∞. This compressed representation
is equivalent to a map with high degree of collisions from the initial data t0. We give examples of the
properties of these mapings with particles in only one dimension.

In both cases we have deterministic systems(one continious the other discrete), where it requires little
e�ort to obtain the hash value or next time-step particle state given the message or the intial condition.
A desirable Hash function will avoid collisions, i.e. di�erent messages will have the di�erent Hash values,
since otherwise this would create errors when retriving the message, in the same way when we coarse-grain
we are asigning di�erent particle states a common value due to our limited resolution.
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Remarkably other properties like the avalanche e�ect is analogous to the Chaotic notion of sensitivity on
initial conditions, we want that a small change on the initial conditions or message to generate a big change
in the �nal particle state or the hash value. However the most interesting property is the intractability of
breaking the Hash, this is in some sense analogous to the lack of inherent increase of order within physical
systems, otherwise known as the second law of thermodynamics[78]. E�ectively the di�cult part is to
unscramble the eggs not to scramble them.

This two interpretations are results of two silent revolutions in physics, namely the introduction of the
notions of information and computation in physics. The �rst started with Leo Szilard analysis of the Maxwell
demon, arguing for a �memory resource� that compensate entropy, then after Shannon introduced formally
Information theory [68] in 1948, the connections started to clarify, by the beggining of 1950 Brillouin [12]
worked strongly to connect both �elds. Among some remarkable work, we �nd Jayne's papers [42, 43]
where he introduced the maximum entropy principle, the introduction of generalized entropies [72, 62, 23]
and the foundation of the �eld of algorithmic information theory [16]. This �eld was very active during the
following decades and perhaps lasted until the 1990's �resolution� of the Maxwell's Demon, a summary of
this program can be found in [84].

The second silent revolution started maybe also in the 1940-50's with von Neumann introduction of
cellular automation [77] and it gave birth in the next decades di�erent areas of knowledge(Algoritmic
Complexity [51], Non-Equilibrium Thermodynamics [28], Complexity Science [53], Quantum Computation
[25], and much more) and it is still going today [83, 81]. In summary both programs claim a kind of duality
between information-physics and computation-physics. There are many remarkable results by these two
programs, specially about the notion of physical entropy, however they are out of scope of this document,
interested readers can refer to [28, 78, 82, 80]. In this document we don't pursue directly the study of the
nature of physical entropy, but we remark on those to stress on the fact that physical entropy has a natural
information-computation aspect to it.

Figure 4: Optimal transport problem between densities ρα and ρβ , where the red/blue-white color pallete
represent the weight of the probability. In this formulation the problem states to �nd the minimal-path
betweem the distributions equivalently as to minimize a total square cost distance of the transformation
map between the original distributions. Figure modi�ed from [60].

2.2 Optimal Transport Interpretation

Another interpretation perhaps from a not so silent revolution, comes from the �eld of optimal transport
[60], where one asks: what is the optimal way to transport a probability density ρα into a di�erent desired
density function ρβ in a way where the cost of doing so is the smallest ? In the case of our molecule gas, we
can interpret both the initial condition and the randomized state as two probability densities, and we want
to �nd a way to transport one to the other in a way that a desired cost function is minimized, Figure 4.

More importantly for our work, the optimal transport problem is a way to enhance distances between
probability measures in a way where the geometry of the space is taken into account(later we would see
another way, section 4). The remarkable paper [45] showed that if at each timestep we minimize a special
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distance (the 2-Wasserstein distance) and maximize the Shannon entropy between the previous time-step
density and the next one, this �ow yields exactly the di�usion equation.

This result is remarkable since it shows that the heat equation is in some sense solving a regularized
optimal transport problem, and in this way maximizing the Shannon entropy at each timestep. The notion
of entropy maximization is a good intuition to have for the schemes we introduce, hence we describe it
extensively in the following section.

2.3 Entropy and Relative Entropy

In this section we introduce the notion of entropy and relative entropy in a more mathematical rigorous
way and analyse their usage and interpretation to understand the rest of the document. We also remark
on the notion of maximum entropy and the relation of entropy and stochastic processes.

2.3.1 Entropy

First we introduce more formally the notion of Shannon Entropy, for a discrete random variable X de�ned
in the countable set

{
x1,, x2, . . .

}
with p(X = xi) = pi, the Shannon entropy is de�ned as,

H(p) = −
∑
i≥1

pi log pi. (1)

In the case of continious probability distributions, let's consider a space X and a measure α ∈M(X )(the
set of all normalized positive measures on X ), such that we can have a density dα(x) = ρα(x)dm(x) , where
x ∈ X and dm(x) is the volume element.

Then for a random variable X on X with distribution α such that p(X ∈ A) = α(A) the Shannon
entropy with respect to the measure α is de�ned as,

H(α) = −
∫
X
ρα log(ρα) dm(x). (2)

Speci�cally for X = Rn we have dα(x) = ρα(x)dx with respect to the Lebesgue measure LRn , then the
Shannon entropy of a random variable X with distribution α yields,

H(α) = −
∫
Rn
ρα log(ρα) dx. (3)

For a remarkable guide to the Shannon entropy and other alternative notions of entropy we refer to [30].
Now we are prepared state the principle of maximum entropy(we remove the reference to Shannon, but it
refers to the principle of maximum Shannon entropy), it was initially developed in the context of statistical
mechanics [42, 43], then popularized by its creator Jaynes[44] and now is used several scienti�c disciplines
[19, 7, 58, 24].

Maximum Entropy Principle[19]: Suppose we are seeking a probability density function subject to
certain constraints (e.g., a given mean or variance), then to determine an estimate of this function, use the
density satisfying those constraints that has entropy as large as possible.
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To get a further intuition, we follow [7] and use the enlightening words of Jaynes[35],

...the fact that a certain probability distribution maximizes entropy subject to certain constraints
representing our incomplete information is the fundamental property which justi�es the use of
that distribution for inference; it agrees with everything that is known but carefully avoids
assuming anything that is not known. It is a transcription into mathematics of an ancient
principle of wisdom...

This leads to an interesting discussion regarding the concept of entropy, that is, the notion of scale, in
the previous section we de�ned discrete entropy with equation (1), however hidden in this de�nition is the
notion that there is an absolute scale in the de�nition of entropy.

Theorem 1 ([21]). Let X be a discrete random variable with alphabet X , then H(X) ≤ log |X | where |X |
denotes the number of elements in the range of X, with equality if and only X has a uniform distribution
over X .

This theorem implies that a discrete entropy is always between 0 ≤ H(X) ≤ log |X |, therefore a quantity
of entropy makes sense by itself(because implicitly you are always normalizing to the maximum possible
amount log |X |). This sounds redundant, however this is key to obtain results like, ML-ME(Maximum
Likelihood-Maximum Entropy) Duality[7, 69]. Interestingly enough this characterestic is transfered natu-
rally to the di�erential notion of entropy (3) with a few of caveats. The �rst caveat is that the maximum
amount of entropy depends on the space, X . We see that for two di�erent spaces X1 = [a, b] with no

constraints and X2 = R with variance σ2, the maximum entropy distributions are di�erent.

Theorem 2 ([21]). For a continuous probability density function p on X1 = [a, b], with no other constraints,

H(p) ≤ ln(b− a),

with equality if and only if p is the uniform distribution over this range.

Theorem 3 ([19]). For a continuous probability density function p on R with variance σ2 ,

H(p) ≤ 1

2
(1 + log(2πσ2)),

with equality if and only if p is Gaussian with variance σ2, i.e., for some µ

we have p(x) = (1/
√

2πσ)e=(1/2)((x−µ)/σ)2 .

There are two more caveats that sadly make the di�erential version of entropy in some sense much less
expressive that its di�erential counterpart. Number one has to be with the fact that the di�erential notion
of entropy can be negative, this is a really hard conceptual roadblock compared to the discrete version.
Ignoring how to interpret this result, we can see that this is the maifestation that a continious probability
distribution can be in some sense more concentrated than the uniform U(0, 1).

The next roadblock is perhaps even more problematic for the conceptual interpretation, note that we
are taking the logarithm of probabilites or densities. This is not a problem for discrete probabilities,
since they are naturally ratios of quantities(ratios of measures[8, 36]), thereby physically adimensional[74].
However a density function ρα is not necessarly dimensionless, the key fact is that the product ρα(x)dx
has the same units as the measure α since dα = ρα(x)dx and α =

∫
dα. It is not always the case that

dx has the same units as dα, this can be easily seen if we work with non-uniform density functions. A
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direct consequence of this fact is that the di�erential entropy is not invariant under non-rigid Euclidean
motions(scalings), in other words our quantitiy of information do depends on what meter stick do we use
to make our measurement and this is not what we experience in the real world.

These roadblocks is what does not allow us to make the di�erential entropy itself a measure of infor-
mation. This is a very non-straight forward feature, in fact the contemporary matematician L.C. Evans
[27] mistakenly de�ned the notion of entropy for parabolic PDE(partial di�erential equations) using di�er-
ential entropy. This lead him astray, even having to de�ne two di�erent entropies and ignoring the units
of the phenomena in the process, ultimately he struggled in the conceptual understanding of the entropy
for parabloic PDEs. The correct approach in both information theory and PDE's is to consider the idea of
relative entropy.

2.3.2 Relative Entropy

Given two discrete random variables X and Y de�ned in the countable sets
{
x1,, x2, . . .

}
and

{
y1,, y2, . . .

}
respectively with p(X = xi) = pi and q(Y = yi) = qi, their relative entropy, or Kuller-Leibler(KL)
divergence or more precisely the information of p relative to q, is

KL(p|q) =
∑
i≥1

pi ln

(
pi
qi

)
(4)

In the case of continious probability distributions, consider two measures α and β with dα(x) =
ρα(x)dm(x) and dβ(x) = ρβ(x)dm(x). Also the random variables X and Y on X with distribution α
and β such that p(X ∈ A) = α(A) and p(Y ∈ B) = β(B) then the relative entropy or Kuller-Leibler(KL)
divergence between the measures α and β is de�ned as:

KL(α|β) =

∫
X
ρα log

(
ρα
ρβ

)
dm(x) = Ex∼α

[
log

(
ρα
ρβ

)]
, (5)

speci�cally for X = Rn we have dα(x) = ρα(x)dx and dβ(x) = ρβ(x)dx with respect to the Lebesgue
measure LRn , then the KL divergence between the measures α and β is

KL(α|β) =

∫
Rn
ρα log

(
ρα
ρβ

)
dx = Ex∼α

[
log

(
ρα
ρβ

)]
. (6)

Even though the previous de�nition of KL divergence is the standard form, it would be useful to consider
the following form for future generalizations,

KL(α|β) = 1 + Ex∼α
[
log

(
ρα(x)

ρβ(x)

)]
− Ex∼β

[
ρα(x)

ρβ(x)

]
. (7)

Relative entropy solves all the previous mentioned problems, �rst KL(α|β) ≥ 0 always with equality if,
and only if, ρα(x) = ρβ(x). Second it is invariant to scalings or more generally parameter transformations,
KL(Aα|Aβ) = KL(α|β)[21] . However it does have a small tradeo�, while the discrete and di�erential
entropy are able to measure a property from a speci�c distribution, the relative entropy impose us to
always compare two distributions. It is a relative measure, not an absolute one, in some sense this seems
like a disadvantage, however as we mentioned before whenever we used the discrete or diferential entropy
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we are really always comparing with the �maximum� entropy distribution in order to make sense of our
measurement, so in some sense this measure is also relative.

Next we compute explicitly the relative entropy between two gaussians, this is a key example to unveil
what is the underlying geometry that the relative entropy induces.

Example 4. In R, let's consider α = N
(
µα, σ

2
α

)
and β = N

(
µβ , σ

2
β

)
, then one has,

KL(α|β) =
1

σα
√

2π

∫
R
e
−1
2

(
x−µα
σα

)2 (
log

(
1

σα
√

2π
e
−1
2

(
x−µα
σα

)2)
− log

(
1

σβ
√

2π
e
−1
2

(
x−µβ
σβ

)2))
dx

=
1

2

(
2 log

(σβ
σα

)
+

(
µα − µβ

)2
σ2
β

+
σ2
α

σ2
β

− 1

)

To see the derivation of this formula, please see Appendix A. In order to understand this result, one
can look at the in�nitesimal geometry of KL[60, 50] , which is obtained by performing a Taylor expansion
at order 2,

KL
(
N
(
µ+ δµ, (σ + δσ)2

)
|N
(
µ, σ2

))
=

1

2

(
2 log

(
σ

σ + δσ

)
+

(µ− µ+ δµ)2

σ2
+

(σ + δσ)2

σ2
− 1

)
=

δσ
σ

+
δ2
σ + δ2

µ

2σ2
− log

(
1 +

δσ
σ

)
=

δσ
σ

+
δ2
σ + δ2

µ

2σ2
−
(
δσ
σ
− δ2

σ

2σ2
+ · · ·

)
=

δ2
σ + 1

2δ
2
µ

σ2
+O(δ3

σ, δ
3
µ)

The key importance of this formula lies on the object called Fisher-Rao Information metric. For
this case we have that this is the metric of the hyperbolic Poincare Half Plane, an interesting behavior is
the geodesics in this space. These are half circles centered along the σ = 0 line and have an exponential
speed, i.e. they only reach the limit σ = 0 after an in�nite time. The computation of these geodesics is
described in Apendix B.

Figure 5: Geodesics of the Fisher-Rao metric between (µ1 = 5, σ1 = 2)and (µ2 = 24, σ2 = 2) .

The important idea of these geodesics is that interpolating alongside the geodesics of this curved space
is a natural generalization of linear interpolation in euclidean space, since both are families of isometric
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interpolations. Therefore an interpolation scheme that naturally comes from the KL divergence would be as
in Figure 6. Of course this idea can be used with more metrics, a natural comparison is linear interpolation
in Euclidean space. So one migth ask, which �distance� between functions induces the euclidean metric in
(µ, σ)-space. This turns out to be the Wasserstein-2 metric, widely used in optimal transport. In fact this
is one of the reasons why is it argued that the Wasserstein metric is the �best� geometric loss functions[50],
we'll expand much more on this metric in the next sections of the document.

Figure 6: KL Geodesic interpolation and Euclidean interpolation between (µ1 = 5, σ1 = 2)and
(µ2 = 24, σ2 = 2) .

2.3.3 Entropy and Stochastich Processes

If we focus again in the Maximum Entropy Principle, it was introduced in the context of statistical inference,
however it has direct relation with the processes of di�usion, for starters the maximum entropy density
distribution in R with given mean µ and variance σ2 is a Gaussian N (µ, σ2) as we saw in Theorem 3, and
as its well known [63] this is the fundamental solution of the Heat equation in R. Furthermore it was shown
in [46] that in some sense the one-dimensional Focker-Planck-Kolmogorov equation(a general form of the
Difussion equation) is a consequence of the maximum entropy principle, more speci�cally

Proposition 5. [[46]] Let there be given a scalar valued random process xt(ω), and assume that all the
information which we have about xt(ω), is summarized in the knowledge of the �rst moment and of the
second moment of the transition probability, that is to say,∫ ∞

−∞
zq(z,∆t/x, t) dz = γ(x, t)∆t,∫ ∞

−∞
z2q(z,∆t/x, t) dz = ν(x, t)∆t, β > 0,

where q(z,∆t/x, t) is the probability density,

p(x′, t+ ∆t/x, t) := q(z,∆t/x, t), z := x′ − x.

Then, according to the maximum entropy principle, the probability density p(x, t) is given by F-P-K equation(Focker-
Planck-Kolmogorov equation),

∂p(x, t)

∂t
= − ∂

∂x
[γ(x, t)p(x, t)] +

1

2

∂2

∂x2
[ν(x, t)p(x, t)] . (8)
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This roughly says that a density evolving under the F-P-K equation has a transition probability that
wants at each time-step to maximize its Shannon entropy, in some sense this gives an understanding on
how the notion Shannon entropy enters in the time evolution of an irreversible difussion process. Another
connection between shannon entropy and difussion related with optimal transport would be explored later
in section 3.1.

Next we talk more speci�cally about the general difussion equation and some fundamental properties
that would be relevant later in the document.

2.4 General Difussion Equation

Starting from the FPK equation (8), we can consider that γ(x) and ν(x) only depend on x only and make

the change, γ(x) =
a′(x)
2b(x)

and ν(x) =
a(x)
b(x)

, hence (8) can be written as,

∂p(x, t)

∂t
=

1

2

d

dx

(
a(x)

d

dx

(
p(x, t)

b(x)

))
, (9)

which is going to be the general form of the difussion equation we would refer in the rest of the document.
Clearly if a(x) = b(x) = 1, we are in the case of the classical heat equation.

For more general spaces X , we can write the difussion equation in a fairly similar way,

∂p(x, t)

∂t
=

1

2
∇X ·

(
a(x)∇X

(
p(x, t)

b(x)

))
, (10)

where the operator ∇X refers to the nabla operator associated to the space X .

As it was mentioned in Proposition (5), the difussion equation is deeply related with stochastic procesess,
we brie�y expand on this in the next section.

2.4.1 Itô Process and FPK Equation

From the theory of stochastic processes [9, 45, 31] it is well known that equation (8) is the so-called Kol-
mogorov Forward equation from the Itô process(Xt, t > 0) given by stochastic partial di�erential equation,

dXt = γ(Xt)dt+
√
ν(Xt)dBt, X(0) = X0 (11)

where (Bt, t > 0) is a standard Brownian motion or Wienner process, γ(x) is the drift coe�cient, ν(x)

is the difussion coe�cient and X0 has a density p(x, 0).

Equation (11) is a formalization of the notion of Brownian motion as described by Langevein[70], where
we model the motion of a particle undergoing difussion in the potential �eld Ψ, where

γ = −∇Ψ and
√
ν(Xt)dBt represents a random force due to molecular collisions(basically the experi-

ment we described in Figure (1)). With that Xt then represents the position of the particle, and ν is
proportional to the square of the temperature. In this model the solution p(x, t) of the FPK equation
represents the probability density at time t for �nding the particle at position x.

Next we emphasize on a di�erent manner to get the difussion equation that is commonly used in
di�erential geometry and that would be useful later in the document.

12



2.4.2 Gradient Flow of General Dirichlet Energy

We start by de�ning the generalized Dirichlet energy functional,

E[u] =
1

4

∫
X
|∇Xu(x)|2 dm(x), (12)

where as before X is an arbitrary space, x ∈ X and dm(x) is the volume element. Next we would
introduce three de�nitions,

De�nition 6 (L2 Space). Let Ω be a Lebesgue measurable set in X . We denote by L2(Ω) the set of functions

f : Ω → R (or C) such that |f |2 is Lebesgue integrable in Ω. Identifying two functions f and g when they

are equal almost everywhere in, L2(Ω) becomes a Banach space when equipped with the norm (integral norm
of order 2),

‖f(x)‖L2(Ω) =

(∫
Ω

|f(x)|2 dm(x)

)1/2

.

Taking u ∈L2(Ω) and v ∈L2(Ω), then L2(Ω) is a Hilbert space with respect to the inner product,

(u(x), v(x))L2(Ω) =

∫
Ω

u(x)v(x) dm(x)

De�nition 7 (Gradient with respect to the L2 structure). Let L2(Ω) be the Hilbert space of square-integrable

functions on a Lebesgue measurable set Ω in a space X , and F : L2(Ω)→ R be a smooth functional. If g is

regular for F , we call δFδg (g) = ∇L2(Ω)F , if it exists, any square-integrable function such that

d

dε
F [g + εh]

∣∣∣
ε=0

=

∫
Ω

h
δF

δg
(g) dm(x)

for every perturbation h = g − g̃ with g̃ ∈ L2(Ω).

This gradient is denoted as having the L2 structure, since it naturally de�nes the gradient in the L2(Ω)
inner product, 〈

∇L2(Ω)F (g), h
〉

=

∫
Ω

h
δF

δg
(g) dm(x) = DF [g] · h

Having this we can pose the following de�nition [18],

De�nition 8 (Gradient Flow in Linear Space). Let P be a linear space, and F : P → R is smooth. The
Gradient �ow (or steepest descent curve) of F is a smooth curve p : R→ P such that,

p′(t) = −∇F (p(t)).

For P = L2(Ω) we can �nd the Gradient �ow for the Dirichlet energy functional using the gradient with

respect to the L2 structure under usual boundary conditions,

p′(t) = −∇E(p(t)) =
1

2
∇X · (∇X (p(x, t))) , (13)
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which is precisely the general Difussion equation (10) for a(x) = b(x) = 1.

The Dirichlet energy (12) usually plays a role in order to prove the uniqueness of the solution of the
heat equation under usual boundary conditions and also to show that the difussion equation is e�ectively
a dissipative process[63].

Next we show a couple discretizations of this equation since they would be useful for the future devel-
opements, �rst we can propose an explicit time discretization of the form,

p(t`+1) = p(t`)− τ∇E(p(t`)),

for a small step size τ . Alternatively we can use an implicit discretization,

p(t`+1) = p(t`)− τ∇E(p(t`+1)),

This discretization has the advantage of being stable, furthermore we can reformulate this scheme into the
following variational discretization scheme, also called proximal-point algorithm[4],

p(t`+1) = argmin
t

1

2

∥∥∥p(t)− p(t`)∥∥∥
L2(Ω)

+ τE(p(t)), (14)

where we casted problem of time-steping as a optimization problem. This at �rst might seem like an
overkill, but this formulation turns out to be useful for both non-diferentiable energies E [60], large time-
steppings [32] and it generalizes naturally to more general spaces. The latter scheme will be discussed later
in the document.

14



3 Difussion Estimator

Let's now turn our attention to the notion of entropy in the context of Partial Di�erential Equations(PDE),
in this context the notion of entropy has usually been concieved as a way to quantify the irreversablity
in dissipative processes [27]. However this is not the full picture, the more general notion of relative
entropy happens to take an important role to describe important transport phenomena. In the past 25
years this has been explored in the community of Kinetic Theory [76] and Optimal Transport [60, 75, 64]
since they want to describe the transport between two distributions and as an special case if the target
distribution(convergence to equilibrium) is an uniform distribution, then we can think of the process as
a dissipative process. Nowadays these ideas have spreaded further and they are well known in many
communities [22, 47].

Let's take a look at two fundamental examples that reveal the fundamental ideas of entropy in PDEs:

Example 9. Suppose we want to model the experiment in Figure 1, one way we could idealize this is by
taking a particle density pro�le inside a box and let it spread under a difussion process. We can formalize
this by saying we have a pro�le f(x) located inside a box Ω ⊂ Rn and we let evolve this distribution under
the heat equation

∂p(x, t)

∂t
−∆p(x, t) = 0 x ∈ Ω ⊂ Rn, t > 0, (15)

p(x, 0) = f(x) x ∈ Ω ⊂ Rn, (16)

where we impose no �ux on the boundaries

∂p(x, t)

∂ν
= 0, ∀x ∈ ∂Ω. (17)

where ν denotes the outward normal unit vector to ∂Ω.

In general this problem is solved numerically [9], however we can get an understanding of the behavior
looking at a couple of special cases, �rst lets take the case where Ω = Rn, also lets consider the pro�le as a
single particle δ(x−s) located at s ∈ Rn and we consider the global cauchy conditions lim|x|→∞ p(x, t) = 0.

In this manner it is well known [63], that the so called fundamental solution of the heat equation is

p(x, t) =
1

(4πt)n/2
e

(
−|x−s|2

4t

)
, t > 0

Figure 7: Experiment of gas of molecules di�ussing. The molecules start at a corner of a box, then when
released they spread through the box. The probability to �nd a molecule at a particular point in the box
gets more uniform over time, until its equaly probable everywhere.
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In this way we see that the particle starts at a well de�ned position and then it spreads all over space,
very much like �gure 1. Now in the general case of a pro�le f(x) and a box Ω ⊂ Rn we cannot solve the
problem analyticaly, however there are still many things we can say. Perhaps the most important thing
is that p(x,∞) = p∞(x) = 1/Area(Ω) is the equilibrium solution of (15). This is the case since, p∞(x)
satis�es the asymptotic equation ∆p(x) = 0 and the boundary conditions (17). Hence this is exactly the
realization of the experiment of Figure 1, we start with a well de�ned initial condition f(x) and little by
little we lose information until we regard the pro�le as random p∞(x) = 1/Area(Ω).

However this is not the full story, what if instead of a uniform random distribution on Ω, we suspect
for some reason(maybe some inhomogeneity in the box) that the �nal random pro�le is a n-simplex distri-
bution(triangular distribution in n dimensions). Is there a way we can adapt our difussion process to take
this into account ? The answer relies on the notion of relative entropy.

Figure 8: Experiment of gas of molecules transporting from a density to another in a one and two dimen-
sional box. What is necessary for having a n-simplex distribution as an equilibrium distribution ?

Let's �rst take a look at how di�erential entropy changes over time,

d

dt
H(p) =

d

dt

(
−
∫

Ω

p log(p) dx

)
=

∫
Ω

−dp
dt

(log(p) + 1) dx = −
∫

Ω

∆p(x, t) (log(p) + 1) dx

Now applying green �rst identity twice and the boundary condition [63],

d

dt
H(p) =

((((
((((

(((
((

−
∫
∂Ω

∂p(x, t)

∂ν
(log(p) + 1) dσ +

∫
Ω

∇p(x, t) · ∇ (log(p)) dx =

∫
Ω

‖∇p(x, t)‖2

p
dx ≥ 0.

Furthermore if Ω is convex then d2

dt2
H(p) ≤ 0 [27]. All of this sounds wonderful, the diferential entropy

behaves just like we expect thermodynamic entropy to behave, it increases over time and it attains a
maximum at the stationary solution. However we know that the di�erential entropy is a quantity with a
lot of di�culties. How is it that it behaves so neatly in this example ? we can explain this by looking at
the relative entropy of the density at a time t with respect to the equilibrium solution,

KL(p|p∞) =

∫
Ω

p log

(
p

p∞

)
dx =

∫
Ω

p log (Volume(Ω)p) dx = −H(p) + log (Volume(Ω))

16



Therefore for this example the diferential entropy is really the realtive entropy minus a constant. There-
fore the diferential entropy is really measuring how far is the pro�le at a time t with respect to the equilibrium
solution. This also explains why the related quantity

S(p) =

∫
Ω

log (p) dx = Volume(Ω)

∫
Ω

1

Volume(Ω)
log (Volume(Ω)p) dx−

∫
Ω

log (Volume(Ω)) dx

= −Volume(Ω) (KL(p∞|p) + log (Volume(Ω)))

is also sometimes associated with entropy[27]. Furthermore it explains why d
dtS(p) ≥ 0 even though

d2

dt2
S(p)�≤0, both are properties of the KL divergence(KL(g|f) is a distance between probability distributions

such that KL(g|f) = 0 i� g = f means that p → p∞ as t → ∞ and KL(g|f) is only convex in g explains
the di�erence of convexity between S(p) and H(p)).

3.1 Wasserstein Flow

With this in place it is not surprising that the notion of relative entropy relates deeply with the general-
difussion equation. To understand this further we'll �rst introduce some notions from optimal transport.

The problem of optimal transport[60, 75] consist in �guring out what is the minimum total cost of
transporting in space a measure α to another measure β (where a �transportation� involves �disassembling�
the measure α, transporting it, and �reassembling it� in the form β). More rigorously let α ∈ M(X ) and
β ∈ M(Y) be two arbitrary normalized positive measures, and c : X × Y → R+ a cost function, then we
de�ne the joint probability distribution(transportation map)

Π (α, β)
def.
= {π ∈M(X × Y) : π(A× Y) = α(A) and π(X ×B) = β(B)} ,

for sets A ⊂ X and B ⊂ Y.

The optimal transportation problem from α to β seeks a coupling παβ ∈ Π (α, β) with minimal cost,

computed as the integral of squared cotst c2 against παβ . Formally, the 2-Wasserstein distance between α
and β is thus de�ned as,

W2 (α, β)
def
=

[
inf

παβ∈Π(α,β)

∫∫
X×Y

c(x, y)2 dπ(x, y)

]1/2

.

If we consider X and Y to be a Riemannian manifoldM we have dπ(x, y) = παβ(x, y) dm(x)dm(y) and
c = d : X × Y → R+ to be the geodesic distance function, so d(x, y) is the shortest distance from x to y
along M , then the 2-Wasserstein distance between α and β is thus de�ned as,

W2 (α, β)
def
=

[
inf

π∈Π(α,β)

∫∫
X×Y

παβ(x, y)d(x, y)2 dm(x)dm(y)

]1/2

.

Next recall our discussion of measures in the beginning of the document, now consider functionals of
the form

α = ρ · λ→
∫
X
f(ρ(x)) dλ(x),
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where λ is a given positive measure on X . The object ρ is in general the Radon-Nikodym derivative
or density of α with respect to λ. Next we'll introduce the Wasserstein gradient, but its useful �rst to
introduce another concept �rst, note that in section 2.4.2 we introduced the gradient with respect to the
L2 structure, now we introduce a simmilar notion but for measures[64],

De�nition 10 (First variation). Consider a space X , a measure α ∈M(X ) (if α is an absolute continious
measure then we will denote it by its density ρ with respect to λ), and a functional F :M(X )→ R. If ρ is

regular for F , then we call δFδρ (ρ) = ∇L2F , if it exists, any measurable function such that

d

dε
F [α+ εχ]

∣∣∣
ε=0

=

∫
X

δF

δρ
(ρ) dχ

for every perturbation χ = α− α̃ with α̃ ∈M(X ).

In our case we will consider dλ(x) = dm(x) as the volume element of X , hence ρ = ρα, and the functional
F :M(X )→ R is de�ned by

F (α) =

∫
X
f(ρα) dm(x),

For this functional the �rst variation can be shown to be δF
δρα

(ρα) = ḟ(ρα). With this on hand we can

introduce the Wasserstein gradient,

De�nition 11 (Gradient with respect to the W 2 structure). Consider a space X , a measure
α ∈M(X ) (if α is an absolute continious measure then we will denote it by its density ρα), and a functional
F :M(X )→ R. If ρα is regular for F , we call ∇W 2F ,

∇W 2F = −∇X ·
(
ρα∇X

(
δF

δρα
(ρα)

))

This gradient is denoted as having the W 2 structure, since it naturally de�nes the gradient in the
geometric tangent cone TanραM(X ) inner product [75, 22],

〈∇W 2F (ρα) ,−∇X · (ξρα)〉 =

∫
X
ρα

〈
∇X

δF

δg
(ρα), ξ

〉
dm(x) = DF [g] · [−∇X · (ξρα)] ,

for −∇X · (ξρα) a �tangent� vector, −∇X ·
(
ρα∇X

(
δF
δρα

(ρα)
))

= ∂ρα
∂t and −∇X · (ξρα) = ∂ρα

∂t . This

inner product is deeply related with the hydrodynamic interpretation of the Optimal Transport problem,
investigated by Otto, Benamou, Bernier and others [75, 54, 5].

Now using De�nition 8 For P =M(X ) we can �nd the Gradient �ow for a functional F :M(X )→ R
using the gradient with respect to the W 2 structure,

ρ′α(t) = −∇W 2F (α) = ∇X ·
(
ρα∇X

(
δF

δρα
(ρα)

))
, (18)

where we assume Neumman boundary conditions ρα∇X
(
δF
δρα

(ρα)
) ∣∣∣
∂X

= 0. in the boundary,

This is the generalization of the Difussion equation. As an special case take
F (α) = −H(α) =

∫
X ρα log ρα dm(x), the functional as the di�erential entropy, �rst note ḟ(ρα) =

log ρα + 1, then

ρ′α(t) = −∇W 2F (α) = ∇X ·
(
ρα
∇X ρα
ρα

)
= ∇2

X ρα,
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which is precisely the heat equation. Henceforth the density that solves the heat equation evolves in the
direction of steepest ascent of the di�erential entropy with respect to the Wasserstein-2 metric structure.
Which is a precise mathematical statement of the second law of thermodynamics in this phenomena, i.e.
the process evolves always increasing the entropy.

So we just described a way to obtain the heat equation by the means of a 2-Wasserstein gradient �ow,
although this is quite impresive, what new insight does it bring to the table ? Something quite remarkable
is the fact that we are taking the gradient of a zeroth-order functional F (α) =

∫
X ρα log ρα dm(x), whereas

with a L2 gradient �ow (13) we are taking the gradient of a �rst-order functional

E(α) = 1
4

∫
X |∇X ρα(x)|2 dm(x), in fact we cannot generate a second order L2 gradient �ow with a zeroth

order functional, this would have important consequences in the proximal-point algorithm of each of the
gradient formulations as we'll see next.

3.1.1 Relation with Density Estimation and Thermodynamic Quantities

Just like we discussed in section 2.4.2, a possible discretization for equation (18) is given by an anlaogous
form [45] of the proximal-point algorithm, where we solve the following optimization problem,

ρα(t`+1) = argmin
t

1

2

∥∥∥ρα(t)− ρα(t`)
∥∥∥
W 2(Ω)

+ τF (p(t)), (19)

this is the so-called JKO-scheme, a scheme that directly connects the solution of a regularized opti-
mal transport problem with the solution of the solution of a second order partial di�erential equation.
An striking di�erence between this discretization and the variational scheme (14) is that for F (α) =
−H(α) =

∫
X ρα log ρα dm(x), the functional that yields heat equation we don't impose a �rst-order

di�erentiability constraint on the density, contrary to both (13) with the �rst-order functional E(α) =
1
4

∫
X |∇X ρα(x)|2 dm(x), and other Heat equation discretization schemes, Section 2.4.2,

This scheme has sparked the interest of many researchers, from theory [75, 64] to applications [60, 13, 59].
In particular for us it was used for density estimation in [13]. In this paper they introduce a family of optimal
transport methods essentially inspired on the method of Maximum Penalized Likelihood Estimation,
where they try to estimate a density by solving a regularized optimization problem, however there was no
bandwidth selection algorithm and no comparison with other competing methods.

In this document we aim to show that we can extend the variational approach of [13]by merging features
from competing methods such as the kernel density estimation via difussion [9] and the cross entropy
method[10], thus generating an uni�ed framework of density estimation. Under this formalism we claim
that the three methods are best seen under a uni�ed perspective based on the gradient �ow interpretation.

Next we'll consider some interesting quantities that emerge naturally from this formalism, �rst note
that,

− d

dt
F = − d

dt

∫
X
f(ρα) dm(x) = −

∫
X
ḟ(ρα)

∂ρα
∂t

dm(x) = −
∫
X

δF

δρα
(ρα)∇X ·

(
ρα∇X

(
δF

δρα
(ρα)

))
dm(x)

Then using Green �rst identity and the boundary conditions,

− d

dt
F =

∫
X
ρα

∣∣∣∣∇X ( δF

δρα
(ρα)

)∣∣∣∣2 dm(x) = I(α)

This is the so called Fisher Information or Entropy Production, in particular for F (α) = −H(α), we

have, I(α) =
∫
X ρα ‖∇ log ρα‖2 dm(x), which is the usual form of the Fisher Information [21]. Next let's

de�ne one more interesting quantity, �rst the Fisher Information Metric ‖α(t0)‖2,
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‖α(t0)‖2 =
d2

dt2
KL(ρα(t)|ρα(t0))

∣∣∣
t0

Now looking at the in�nitesimal geometry of KL[60, 50] , which is obtained by performing a Taylor
expansion at order 2 we can get some insight,

KL(α(t+ ∆t)|α(t)) =

∫
X
ρα(t+ ∆t) (log ρα(t+ ∆t)− log ρα(t)) dm(x)

=

∫
X

(
∆t

∂ρα
∂t

+ ρα(t)

)
∂

∂t
(log ρα(t)) ∆t dm(x)

=

∫
X

(
∆t

∂ρα
∂t

+ ρα(t)

)
∆t

ρα(t)

∂ρα
∂t

dm(x)

=

∫
X

(
∂ρα
∂t

∆t+
1

ρα(t)

(
∂ρα
∂t

)2

∆t2

)
dm(x)

=
��

���
���

∆t
d

dt

(∫
X
ραdm

)
+ ∆t2

∫
X

1

ρα(t)

(
∂ρα
∂t

)2

dm(x)

Hence the formula for the Fisher Information metric ‖α(t)‖2,

‖α(t)‖2 =

∫
X

1

ρα(t)

(
∂ρα
∂t

)2

dm(x) =

∫
X

1

ρα(t)

∣∣∣∣∇X ·(ρα∇X ( δF

δρα
(ρα)

))∣∣∣∣2 dm(x)

in particular for F (α) = −H(α), we have, ‖α(t)‖2 =
∫
X

1
ρα
‖∆ρα‖2 dm(x), which is a second order

functional. Now we'll describe the fundamental example from this formalism.

3.1.2 Focker-Planck Equation

So far he have seen how several quantites of information theory and statistical mechanics emerge in the
context of the difussion equation. Now we will see how relative entropy appears in the picture and clarify
several things, consider the following functional(free energy)

F (α) = E(α)−β−1H(α) =

∫
X
ραΨ dm(x)+β−1

∫
X
ρα log ρα dm(x), ρµ =

1

Z
e−βΨ, with Z =

∫
X
e−βΨ dm(x)

where ρµ is the density of a Gibbs distribution and β can be regarded as the inverse temperature of the
ensemble. It turns out that this functional is precisely the KL divergence between a con�guration at t and
the µ density,

F (α) = β−1KL(α|µ)− β−1 log (Z) .

The relation of relative entropy and free energy holds universaly in continious and discrete dynamical
processes, interestingly it has been explored recently trying to unite biology and information [61, 3, 2].
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Returning to our topic, we can use the full free energy F (α) = β−1KL(α|µ)− β−1 log (Z) to compute the

Wasserstein gradient �ow , note that ḟ(ρα) = Ψ + β−1 log ρα + 1, then

ρ′α(t) = −∇W 2F (α) = ∇X ·
(
ρα

(
∇XΨ +∇X

(
β−1 log ρα

)))
= ∇X · (ρα∇XΨ) +∇X ·

(
∇X

(
β−1ρα

))

Now taking 2β−1 = ν as the difussion coe�cient and γ = −∇Ψ as the drift coe�cient inspired from
the Itô Process of equation (11), we obtain the F-P-K equation(Focker-Planck-Kolmogorov equation (8)),

ρ′α(t) = −∇X · (ραγ) +
1

2
∇X · (∇X (ραν)) , (20)

Henceforth the density that solves the F-P-K equation evolves in the direction of steepest descent of
the relative entropy with respect to the Wasserstein-2 metric. Also alternatively taking a(x) = 2β−1ρµ and
b(x) = ρµwe recover (10)

∂ρα
∂t

=
1

2
∇X ·

(
a(x)∇X

(
ρα
b(x)

))
,

From this we see that the stationary solution is b(x) = ρµ, therefore we'll denote this distribution as

µ = α∞. This alongside d
dtF (α) ≤ 0 means that the distribution obtaines its minimum free energy at the

stationary solution.

This form is precisely theKernel Density Estimation via Di�usion from [9] with particular choice of
a(x) and b(x). The method of density estimation via difussion is very widely used because of its robustness
and its bandwith selection algorithm. As a consequence it has been used in many applications, from
crime [34] to clustering[52], and is now the state of the art in the �eld of density estimation. Our previous
derivation shows that the formalism of Wasserstein �ow might o�er a extended view to this powerful density
estimator.

Next lets de�ne a couple more quantites, the mean energy and energy production, �rst recall from the
the de�nition of free energy in Thermodynamics F = 〈E〉 − TS, hence our �thermodynamic� Mean Energy
in this case is:

E(α) =

∫
X
ραΨ dm(x) = −β−1

∫
X
ρα log ρ∞ dm(x)− β−1 log (Z)

Now the Mean Energy Production can be computed using,

d

dt
E(α) = −β−1

∫
X

∂ρα
∂t

log ρ∞ dm(x)

= −β−1
∫
X

1

2
∇X ·

(
2β−1ρ∞∇X

(
ρα
ρ∞

))
log ρ∞ dm(x)

= −β−2
∫
X
ρ∞∇X

(
ρα
ρ∞

)
∇X (log ρ∞) dm(x)

= −β−2
∫
X
∇X

(
ρα
ρ∞

)
∇X (ρ∞) dm(x)

Clearly only if ∇X (ρ∞) = 0, where the equilibrium distribution is constant, then the mean energy is
conserved. Next we'll consider some special functionals and their �ows.
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3.2 Flow of Statistical divergences

Performing a Wasserstein gradient �ow with the KL-Divergence provide us with the very powerful KDE,
we can extend this result considering a larger family of divergences that provide simmilar properties to
the gradient �ow. In general a divergence D satis�es D(α, β) ≥ 0, D(α, β) = 0 if and only if α = β and
sometimes a convexity property, but it does not need to be symmetric or satisfy the triangular inequality.
This functions are used extensively as loss functions for problems of inference[60], moreover we can think
of them intuitively in the following coginitive approach: A formalization of how much did I learned from β
given that I knew α beforehand. Clearly this is asymmetric and not necessarily linearly cummulative[17].

Therefore it is not unreasonable to consider a bigger family of divergences D in the context of statistical
inference since the KL divergence is in some sense as special as any other divergence measure[23]. It is just
one more way to operationalize the notion of divergence with certain linearity properties.

3.2.1 Csiszár divergences (f-divergences)

Inspired in the fact that the free energy F (α) = β−1KL(α|µ) − β−1 log (Z) contained a KL-Divergence
consider a more general functional of f -divergences or Csiszár divergences[23],

F (α) = D(ρα → ρβ) =

∫
X
ρβϕ

(
ρα
ρβ

)
dm(x),

where ϕ : R+ → R is a twice continuous diferentiable function with ϕ(1) = 0 and ϕ′′(x) ≥ 0 for all R+.

With this we compute the Wasserstein gradient �ow , note that ḟ(ρα) = ϕ′
(
ρα
ρβ

)
, then

ρ′α(t) = −∇W 2F (α) = ∇X ·
(
ρα∇X

(
ϕ′
(
ρα
ρβ

)))
It is pretty useful to compute now the equilibrium distribution in the following way [47, 15, 57] since it

will be useful later,

0 = ρ∞

(
∇X

(
ϕ′
(
ρ∞
ρβ

)))
for ρ∞ > 0,

ϕ′
(
ρ∞
ρβ

)
= cte

Since ϕ′′(x) ≥ 0 for all R+, the function ϕ′ (x) has a unique inverse in the domain R+, hence,

ρ∞
ρβ

= ϕ′−1 (cte) =⇒ ρ∞ = C · ρβ

Since both ρβ and ρ∞ are normalized densities, in all cases ρβ is the stationary distribution !!!! Therefore
we'll denote this distribution as ρ∞ = ρβ from now on.

� Taking as special case ϕ (x) = β−1 (x log (x)− log (Z)x) , we obtain the case of KL-Divergence

F (α) =

∫
X
ρ∞β

−1

(
ρα
ρ∞

log

(
ρα
ρ∞

)
− ρα
ρ∞

)
dm = β−1 (KL(α|α∞)− log (Z)) ,
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Then the Wasserstein gradient �ow is,

ρ′α(t) = ∇X ·
(
ρα∇X

(
β−1 log

(
ρα
ρ∞

)
− β−1 ρ∞

ρα

(
ρα
ρ∞

)))
= ∇X ·

(
ρα∇X

(
β−1 log (ρα)− β−1 log (ρ∞)− β−1

))
= ∇X ·

(
ρα∇X

(
β−1 log (ρα)

)
− ραβ−1∇X (log (ρ∞))

)
= ∇X ·

(
ρα∇XΨ + ραβ

−1∇X ρα
)

,where Ψ = −β−1 log ρ∞. An important di�erence of the KL-Divergence compared to the more
general case D(ρα → ρβ), is that the resulting Wasserstein gradient �ow is a linear diferential operator

L = 1
2∇X ·

(
2β−1ρ∞∇X

(
·
ρ∞

))
on ρα, this is not a trivial property and seems to be a coincidence than a

feature of the Divergences. Moreover all of the following Wasserstein �ows are going to produce non-linear
Difussion Operators[59].

� Let's consider another example, that yields the Pearson's χ2 CE distance, hence ϕ(x) = 1
2

(
x2 − 1

)
,

then ḟ(ρα) = ρα
ρ∞

, hence the Wasserstein gradient �ow,

ρ′α(t) = ∇X ·
(
ρα∇X

(
ρα
ρ∞

))

� As a generalization of the previous distance consider the `-parametrized family ϕ(x) = x`−x
`(`−1)

,then

ḟ(ρα) = 1
`−1

(
ρα
ρ∞

)`−1
, hence the Wasserstein gradient �ow,

ρ′α(t) = ∇X ·

(
ρα∇X

(
1

`− 1

(
ρα
ρ∞

)`−1
))

= ∇X ·
(
ρ`αρ

1−`
∞ ∇X (ρα) +

1

`− 1
ρ`α∇X

(
ρ1−`
∞

))
= ∇X ·

(
1

`ρ`−1
∞
∇X

(
ρ`α

)
+

1

`− 1
ρ`α∇X

(
ρ1−`
∞

))

where the parameter ` includes the Hellinger distance for ` = 1/2, Pearson's χ2 discrepancy measure for

` = 2, Neymann's χ2 measure for ` = −1, the Kullback-Leibler distance in the limit as ` → 1, and Burg
CE distance as `→ 0.

� Also consider the zeroth order Total Variation ϕ(x) = 1
2 |x − 1|, then ḟ(ρα) =

(
ρα
ρ∞

)
2
∣∣∣ ραρ∞ ∣∣∣ , hence the

Wasserstein gradient �ow,

ρ′α(t) =
1

2
∇X ·

ρα∇X

(
ρα
ρ∞

)
∣∣∣ ραρ∞ ∣∣∣


� Probability Simplex for Divergences Experiments:f-divergenceSimplex-Peyre-Twitter.
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3.2.2 Cross Entropy and Maximum Entropy Method

Note for the following generalized functional,

F (α) =

∫
X
ρβϕ

(
ρα
ρβ

)
dm+

n∑
i=1

∫
X
ραλiKi(x) dm(x),

where each Ki : X → R is an absolutely continuous function and κi =
∫
X ραKi(x) dm(x) are the

generalized moments of the density ρα.

The Wasserstein gradient �ow yields easily,

ρ′α(t) = −∇W 2F (α) = ∇X ·

(
ρα∇X

(
ϕ′
(
ρα
ρβ

))
+ ρα

n∑
i=1

∇XλiKi(x)

)

The equilibrium solution satis�es,

ϕ′
(
ρ∞
ρβ

)
+

n∑
i=1

λiKi(x) = cte

Next, set cte = −λ0 =
∑n
i=1−λ0K0(x) with K0(x) = 1, now

ρ∞ = −ρβϕ′−1

(
n∑
i=0

λiKi(x)

)
,

which is precisely the functional solution of the Euler-Lagrange Equation of the Dual problem of the
Cross Entropy(CE) postulate[10]. This implies that we are able to naturally adapt the solution of the
Cross-Entropy Method with the stationary solution derived from the Wasserstein �ow. This method of
inference is of great power because it attempts to estimate a density given the known information about the
density(the moments κi) and nothing more. As a result it is very minimal, hence it can be used in a great
amount of circumstances, from Natural language[7] to analysis of popularity of programming languages[24].

Our current analysis via optimal transport in some sense allowed us to formalized the notion that every
time we do a density estimation via gradient �ow we are also doing a minimal information inference, starting
from the initial density(empirical density) into a guess that represents the information known about the
data prior to the density estimation. This surprising result is also something that follows from the analysis
of [46].

In the particular case again of the KL divergence with the function ϕ (x) = β−1 (x log (x)− x) , the
equilibrium solution satis�es,

log

(
ρ∞
ρβ

)
+

n∑
i=1

λiKi(x) = cte,

setting ρβ = e−λ0K0(x), we have

log (ρ∞) = cte−
n∑
i=0

λiKi(x) =⇒ ρ∞ =
1

Z
e
∑n
i=0−λiKi(x), Z =

∫
X
e
∑n
i=0−λiKi(x) dm(x),
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which is precisely the Gibbs Distribution, or in general the solution of the Dual problem of the Maximum
entropy method[19, 24]. This method is the original version of the cross-entropy method, �rst pioneered
in the physics of statistical mechanics[42, 43], and it has had great impact in the scienti�c community[24].
Furthermore the result that the stationary solution of a linear Focker-Planck Equation solves a version
of the Maximum entropy method was already known in the physics community[29] for the past 20 years,
however they had not conected it with optimal transport. Nevertheless we can say that many of the ideas
discussed in this document have been rediscovered plenty of times in several communities.

3.2.3 Bregman Divergences

We can also consider the family of Bregman divergences[11], for smooth strictly �convex�
functional ψ :M(X )→ R,

Bψ

(
ρα

∣∣∣ρβ) = ψ (ρα)− ψ
(
ρβ
)
−
〈
δψ

δρα
(ρα) , ρα − ρβ

〉
L2(X )

With this we compute the Wasserstein gradient �ow , note that ḟ(ρα) = δψ
δρα

(ρα)− δψ
δρβ

(
ρβ
)
, then

ρ′α(t) = −∇W 2F (α) = ∇X ·
(
ρα∇X

(
δψ

δρα
(ρα)− δψ

δρβ

(
ρβ
)))

where clearly if ρα = ρβ , then it satis�es the stationary equation, Therefore we'll denote this distribution
as ρ∞ = ρβ from now on.

� As a couple of examples, lets look at, ψ(α) = β−1H(α), that induces the KL-Divergence, then

ρ′α(t) = ∇X ·
(
ρα∇X

(
β−1 log (ρα)− β−1 log (ρ∞)

))
= ∇X ·

(
ρα∇XΨ + ραβ

−1∇X ρα
)

,where Ψ = −β−1 log ρ∞.

� Also then consider, ψ(α) = 1
m−1 ‖ρα‖Lm(X ) , that induces the L

m-Distance, then

ρ′α(t) = ∇X ·
(
ρα∇X

(
m

m− 1
ρm−1
α − m

m− 1
ρm−1
∞

))
= ∇X ·

(
∇X

(
ρmα
))
−∇X ·

(
ραmρ

m−2
∞ ∇X (ρ∞)

)
which is a porous media type equation [73, 54] that evolves towards ρ∞.

� Finally consider, ψ(α) = −
∫
X log ρα dm(x), that induces the Itakura�Saito distance, then

ρ′α(t) = ∇X ·
(
ρα∇X

(
− 1

ρα
+

1

ρ∞

))
= ∇X ·

(
1

ρα
∇X (ρα) + ρα∇X

(
1

ρ∞

))
� Other examples: Bregman-Peyre-Twitter.
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3.2.4 Renyi Divergences and Other Generalizations

We can introduce the Renyi divergence as,

KLreq (α|β) =
1

1− q log

(∫
X
ρα

(
ρα
ρβ

)q−1

dm(x)

)
,

hence,

δKLq(α|β)

δρα
(ρα) =

q

1− q

(
ρα
ρβ

)q−1

e(q−1)KL
re
q (α|β) =

q

1− q

(∫
X
ρβ

(
ρα
ρβ

)q
dm(x)

)−1(
ρα
ρβ

)q−1

therefore the Wasserstein gradient �ow,

ρ′α(t) =
1

2
∇X ·

(
ρα∇X

(
q

1− q

(
ρα
ρβ

)q−1

e(q−1)KL
re
q (α|β)

))

Next consider the Tsallis divergence, it is related to the Renyi divergence through the following one-to-
one function. For γ ∈ (0, 1) ∪ (1,∞)and z > 0, let

ϕγ(z) = exp(z − γz),

then

KLtsq (α|β) =
1− ϕq

(
KLreq (α|β)

)
1− q =

1

1− q

(
1−

∫
X
ρα

(
ρα
ρβ

)q−1

dm(x)

)
,

hence,

δKLtsq (α|β)

δρα
(ρα) =

−q
1− q

(
ρα
ρβ

)q−1

,

therefore the Wasserstein gradient �ow,

ρ′α(t) =
1

2
∇X ·

(
ρα∇X

(
−q

1− q

(
ρα
ρβ

)q−1
))

Moreover the Tsallis divergence is very related to the `-parametrized family ϕ`(x) = x`−x
`(`−1)

divergence

that we introdice in the previous section with q − 1 = `,

Dϕq−1(ρα → ρβ) =
1

(q − 1) (q − 2)

(∫
X
ρα

(
ρα
ρβ

)q−1

dm(x)− 1

)
=

1

(q − 2)
KLtsq (α|β),
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What is the di�erence between the standard KL and this generalizations, we can get some intuition
by analyzing di�erent properties that the discrete versions of this divergences satisfy. First let's de�ne the
entropies associated to these divergences,

KLreq (α|LX ) = Hre
q (α) =

1

1− q log

(∫
X

(ρα)q dm(x)

)
,

KLtsq (α|LX ) = Hts
q (α) =

1

1− q

(
1−

∫
X

(ρα)q dm(x)

)
,

where LX is the uniform measure over X . These entropies also have their discrete version, for a discrete
random variable X de�ned in the countable set

{
x1,, x2, . . .

}
with p(X = xi) = pi, the entropies are,

Hre
q (p) =

1

1− q log

∑
i≥1

(pi)
q

 , (21)

Hts
q (p) =

1

1− q

1−
∑
i≥1

(pi)
q

 , (22)

Now if we compare the di�erent properties that each of the entropies (1) ,(21) ,(22) have, we can list
�ve basic properties:

1. Continuity: The entropy measure H (p1, . . . , pn) is a continuous function of all the probabilities pk,
which means that a small change in probability distribution will only result in a small change in the
entropy.

2. Symmetry: H (p1, . . . , pn) is permutationally symmetric; i.e., the position change of any two or
more pk in H (p1, . . . , pn) will not change the entropy value. Actually, the permutation of any pk in
the distribution will not change the uncertainty or disorder of the distribution and thus should not
a�ect the entropy.

3. Maximality: H
(

1
n , . . . ,

1
n

)
is a monotonic increasing function of n. For an equiprobable distribution,

when the number of choices n increases, the uncertainty or disorder increases, and so does the entropy
measure.

4. Recursivity or Coarse Graining: If an entropy measure satis�es (23) or (24), then it has the
recursivity property. It means that the entropy of n outcomes can be expressed in terms of the
entropy of n− 1 outcomes plus the weighted entropy of the combined 2 outcomes.

Hn (p1, p2, . . . , pn) = Hn−1 (p1 + p2, p3, . . . , pn) + (p1 + p2)H2

(
p1

p1 + p2
,

p2

p1 + p2

)
, (23)

Hn (p1, p2, . . . , pn) = Hn−1 (p1 + p2, p3, . . . , pn) + (p1 + p2)qH2

(
p1

p1 + p2
,

p2

p1 + p2

)
, (24)

where q is the parameter in Renyi's entropy or Tsallis entropy.

27



5. Additivity: If p = (p1, . . . pn) and r = (r1, . . . , rn) are two independent probability distribution,
and the joint probability distribution is denoted by p • r , then the property

H(p • r) = H(p) +H(r),

H(p • r) = H(p) +H(r) + (1− q)H(p)H(r),

where q is the parameter in Renyi's entropy or Tsallis entropy.

We can list what properties satis�y each entropy:
Properties (1) (2) (3) (4) (5)

Shannon's yes yes yes yes(only Recursivity) yes(only Additivity)
Renyi's yes yes yes none yes(only Additivity)
Tsallis's yes yes yes yes(only q-Recursivity) yes(only q-Additivity)

Table 2: Comparison of Properties from the Three Entropies

So we see here that in some sense Shannon's entropy is quite special, since it satis�es all the �desired�
properties for a information measure. Even though the Renyi entropy satis�es the unmodi�ed version of
additivity it does not satisfy recursivity and the Tsallis entropy sats�es a modi�ed vesion of recursivity and
additivity, which in some sense makes it more robust than the shannon entropy. As a consequence as we
saw in the previous section the generalization of this �ow yields a porous medium equation, which for ` = 1
yields the linear heat equation.

Next we consider the �ow of some higher order divergences and a few of their properties.

3.2.5 Higher order Divergences

In the previous section we introduced a series of zeroth order divergences commonly used in statistics and
information theory. We can also consider higher order divergences and their Wasserstein �ows, hence we'll
consider functionals of the form

α = ρ · λ→
∫
X
f(ρ(x),∇X ρ(x),∇X · ∇X ρ(x), · · · )dλ(x),

Again this is very useful to discretize 4-th or (2n+2-th) higher order PDE's with a variational scheme (19)
requiring only �rst-order di�erentiability or (n-th order di�erentiability) instead of a higher di�erentiability
requirement (14), Section 2.4.2,.

� First consider a modi�ed Dirichlet energy like we introduced in the begining of the document,

ED(α) =
1

2

∫
X
ρ∞

∣∣∣∣∇X ( ρα
ρ∞

)∣∣∣∣2 dm(x)

Computing the Wasserstein gradient �ow,

ρ′α(t) = −∇X ·
(
ρα∇X

(
1

ρ∞
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

))))

which is a type of thin �lm equation [66]. For this equation you have to impose two boundary conditions,

∂

∂ν

(
ρα
ρ∞

)
= 0, ρα

∂

∂ν

(
1

ρ∞
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

)))
= 0
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� We can also consider the Fisher Information of the KL with β = 1,

I(α) =

∫
X
ρα

∣∣∣∣∇X (log

(
ρα
ρ∞

))∣∣∣∣2 dm(x) =

∫
X

1

ρα

∣∣∣∣ρ∞∇X ( ρα
ρ∞

)∣∣∣∣2 dm(x)

Computing the Wasserstein gradient �ow,

ρ′α(t) = −∇X ·
(
ρα∇X

(
4
√
ρα
∇X · (∇X (

√
ρα))− 4

√
ρ∞
∇X · (∇X (

√
ρ∞))

))
= −∇X ·

(
ρα∇X

((
ρ∞
ρα

)2(
∇X

ρα
ρ∞

)2

−
(

2

ρα

)
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

))))

which is the Derrida-Lebowitz-Speer-Spohn equation [33, 48]. For this equation you have to impose two
boundary conditions,

∂

∂ν
(ρα) = 0, ρα

∂

∂ν

(
4
√
ρα
∇X · (∇X (

√
ρα))− 4

√
ρ∞
∇X · (∇X (

√
ρ∞))

)
= 0

Surprisingly this equation behaves very simmilarly to the general difussion equation, with simmilar
bounds, temporal and stationary solutions.

� This functional might be generalized into a family of �rst order entropies, with s > 1,

Is(α) =

∫
X
ρα

∣∣∣∣∇X (log

(
ρα
ρ∞

))∣∣∣∣s dm(x) =

∫
X

1

ρs−1
α

∣∣∣∣ρ∞∇X ( ρα
ρ∞

)∣∣∣∣s dm(x)

Computing the Wasserstein gradient �ow, Computing the Wasserstein gradient �ow,

ρ′α(t) = −∇X ·

(
ρα∇X

((
ρ∞
ρα

)s(
∇X

ρα
ρ∞

)s
−
(
s

ρα

)
∇X ·

(
ρα

(
ρ∞
ρα

)s−1(
∇X

ρα
ρ∞

)s−1
)))

For this equation you have to impose two boundary conditions,

∂

∂ν
(ρα) = 0, ρα

∂

∂ν

((
ρ∞
ρα

)s(
∇X

ρα
ρ∞

)s
−
(
s

ρα

)
∇X ·

(
ρα

(
ρ∞
ρα

)s−1(
∇X

ρα
ρ∞

)s−1
))

= 0

� As an special case of this functional we have s = 1, called the Total Variation(TV)[65],

TV (α) = I1(α) =

∫
X
ρα

∣∣∣∣∇X (log

(
ρα
ρ∞

))∣∣∣∣ dm(x) =

∫
X

∣∣∣∣ρ∞∇X ( ρα
ρ∞

)∣∣∣∣ dm(x)

Computing the Wasserstein gradient �ow,

ρ′α(t) = −∇X ·
(
ρα∇X

(
1
ρ∞
∇X ·

(
ρ∞

∇X
(
ρα
ρ∞

)
∣∣∣∇X( ραρ∞ )∣∣∣

)))
,
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is an equation recently studied in [14, 26, 6].For this equation you have to impose two boundary condi-
tions,

∂

∂ν

(
ρα
ρ∞

)
= 0, ρα

∂

∂ν

 1

ρ∞
∇X ·

ρ∞ ∇X
(
ρα
ρ∞

)
∣∣∣∇X ( ραρ∞)∣∣∣

 = 0

� Simmilarly we can propose second-order entropies �rst considering the Biharmonic energy [41],

EB(α) =
1

2

∫
X

1

ρ∞

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣2 dm(x)

Computing the Wasserstein gradient �ow,

ρ′α(t) = ∇X ·
(
ρα∇X

(
1

ρ∞
∇X ·

(
ρ∞∇X

(
1

ρ∞
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

))))))

which is a sixth-order equation. For this equation you have to impose three boundary conditions,

∂

∂ν

(
ρα
ρ∞

)
= 0,

∂

∂ν

(
ρ∞∇X

(
ρα
ρ∞

))
= 0, ρα∇X

(
1

ρ∞
∇X ·

(
ρ∞∇X

(
1

ρ∞
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

)))))
= 0

� Also consider the Fisher Information metric of the KL with β = 1,

‖α(t)‖2 =

∫
Ω

1

ρα

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣2 dm(x) =

∫
Ω

1

ρα

∣∣∣∣∇X ·(ρα∇X (log

(
ρα
ρ∞

)))∣∣∣∣2 dm(x),

Computing the Wasserstein gradient �ow,

ρ′α(t) = ∇X ·

(
ρα∇X

(
2

ρ∞
∇X ·

(
ρ∞∇X

(
1

ρα
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

))))
− 1

ρ2
α

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣2
))

For this equation you have to impose three boundary conditions,

∂

∂ν

(
ρα
ρ∞

)
= 0,

∂

∂ν

(
ρ∞∇X

(
ρα
ρ∞

))
= 0,

ρα
∂

∂ν

(
2

ρ∞
∇X ·

(
ρ∞∇X

(
1

ρα
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

))))
− 1

ρ2
α

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣2
)

= 0

� This functional might be generalized into a family of second order entropies,

‖α(t)‖2s =

∫
X

1

ρs−1
α

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣s dm(x) =

∫
Ω

1

ρs−1
α

∣∣∣∣∇X ·(ρα∇X (log

(
ρα
ρ∞

)))∣∣∣∣s dm(x)
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Computing the Wasserstein gradient �ow,

ρ′α(t) = ∇X ·

(
ρα∇X

(
s

ρ∞
∇X ·

(
ρ∞∇X

(
1

ρs−1
α

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣s−1
))
− 1

ρsα

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣s
))

For this equation you have to impose three boundary conditions,

∂

∂ν

(
ρα
ρ∞

)
= 0,

∂

∂ν

(
ρ∞∇X

(
ρα
ρ∞

))
= 0,

ρα
∂

∂ν

(
s

ρ∞
∇X ·

(
ρ∞∇X

(
1

ρs−1
α

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣s−1
))
− 1

ρsα

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣s
)

= 0

� As an special case of this functional we have s = 1, called the second-order Total Variation(TV),

TV2(α) = ‖α(t)‖21 =

∫
X

∣∣∣∣∇X ·(ρ∞∇X ( ρα
ρ∞

))∣∣∣∣ dm(x)

Computing the Wasserstein gradient �ow,

ρ′α(t) = ∇X ·
(
ρα∇X

(
1
ρ∞
∇X ·

(
ρ∞∇X

(
∇X ·

(
ρ∞∇X

(
ρα
ρ∞

))
∣∣∣∇X ·(ρ∞∇X( ραρ∞ ))∣∣∣

))))
,

For this equation you have to impose three boundary conditions,

∂

∂ν

(
ρα
ρ∞

)
= 0,

∂

∂ν

(
ρ∞∇X

(
ρα
ρ∞

))
= 0, ρα

∂

∂ν

 1

ρ∞
∇X ·

ρ∞∇X
 ∇X ·

(
ρ∞∇X

(
ρα
ρ∞

))
∣∣∣∇X · (ρ∞∇X ( ραρ∞))∣∣∣

 = 0

3.2.6 Fundamental Solutions

In the next section we'll consider the global cauchy problem of some of the equations given in the previous
section with ρ∞ = 1,

1. (KL-Divergence) Heat Equation:
∂ρα
∂t

= ∇X · (∇X (ρα)) ,

2. (Lm-Distance) Porous Media Equation with m = 2,

∂ρα
∂t

= ∇X ·
(
∇X

(
ρ2
α

))
,
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3. (Dirichlet energy) Thin Film Equation,

ρ′α(t) = −∇X · (ρα∇X (∇X · (∇X (ρα))))

4. (Fisher Information) Derrida-Lebowitz-Speer-Spohn(DLSS) equation,

ρ′α(t) = −∇X ·
(
ρα∇X

(
4
√
ρα
∇X · (∇X (

√
ρα))

))
5. (Total Variation) Wasserstein Flow,

ρ′α(t) = −∇X ·
(
ρα∇X

(
∇X ·

(
∇X (ρα)
|∇X (ρα)|

)))
,

We'll consider the inital conditions as,

ρα(x, 0) = δ(x− s) x ∈ Ω ⊂ Rn,
and the boundary condition is the global cauchy condition

lim
|x|→∞

ρα(x, t) = 0.

Let's simplify and work with R1, to obtain the fundamental solution of this equations we use the results
of [13], where similarity arguments were used to obtain the solutions. This method is in some sense a
generalazation of the invariant transformation for the heat equation[63]. If we normalize to the conditions
given above, we obtain,

1. (KL-Divergence) Heat Equation:

ρα(x, t) =
1

(4πt)1/2
e

(
−|x−s|2

4t

)
, t > 0

2. (Lm-Distance) Porous Media Equation with m = 2,

ρα(x, t) =

{
−(x−s)2

12t + 1
4

(
3
t

)1/3
x ∈

[
−(9t)1/3 + s, (9t)1/3 + s

]
0 otherwise

3. (Dirichlet energy) Thin Film Equation,

ρα(x, t) =


(x−s)4

120t −
(

1

t3/2

)2/5
(x−s)2

4·151/5·22/5 +
t
(

1

t3/2

)4/5
153/5

8·24/5 x ∈

[
−
√
t
(

1

t3/2

)1/5
152/5

21/5 + s,

√
t
(

1

t3/2

)1/5
152/5

21/5 + s

]
0 otherwise

4. (Fisher Information) Derrida-Lebowitz-Speer-Spohn(DLSS) equation,

ρα(x, t) =
1(

2π
√

2t
)1/2 e

(
−|x−s|2

2
√

2t

)
, t > 0
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5. (Total Variation) Wasserstein Flow,

ρα(x, t) =

{
1/(2 6
√

9t) x ∈
[
− 6
√

9t+ s, 6
√

9t+ s
]

0 otherwise

Figure 9: Fundamental Solutions at six di�erent times t of Equations 1-5 with s = 0.

3.2.7 Elementary Examples

� Simplest example Gaussian in R, compute Mean Energy, Entropy, Free Energy, Fisher informa-
tion(generalized and normal), Mean Energy production, Fisher Information metric if possible to
compute for fundamental solution(cauchy) and then plot them for numerical example(neumman).
Appendix C.

� Transport of Two Gaussians in R, compute Mean Energy, Entropy, Free Energy, Fisher informa-
tion(generalized and normal), Mean Energy production, Fisher Information metric, and plot them
for analytical(cauchy) and numerical example(neumman). Then introduce the transport for R and

R2 from one to two gaussians as an example. Appendix D.

� Most �complex� distribution[61, 3], using the KDE examples and the Energy, Entropy, Free En-
ergy, Fisher information(generalized and normal), Energy production, Fisher Information metric.
Fisher-invariance-Nlab, Tweet Peyre, DivergenceSimon KL Applications.

3.3 Entropic Inequalities

� Exponential decay results for statisitcal divergences(PDE literature[47],Stochastic Processes[57],Easy[56]).
High order entropies decay results ??

� Mention that with this method you can control the moments of the equilibrium distribution, but not
for all the process[55]. What happens with high order entropies ??
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4 Conclusions
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Appendix A

In R, let's consider α = N
(
µα, σ

2
α

)
and β = N

(
µβ , σ

2
β

)
, then one has,

KL(α|β) = 1 + Ex∼α
[
log
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ρα(x)

ρβ(x)

)]
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=
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Using the formulas
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dx = 1,
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4

]

+

(
µ2
β

2σ2
β

− µ2
α

2σ2
α

+ log
(σβ
σα

))

KL(α|β) =

(
1

2σ2
β

− 1

2σ2
α

)(
2

1

2σ2
α

+
µ2
α

σ4
α

)
σ4
α −

(
µβ

σ2
β

− µα

σ2
α

)
µα +

(
µ2
β

2σ2
β

− µ2
α

2σ2
α

+ log
(σβ
σα

))

=

(
1

2σ2
β

− 1

2σ2
α

)(
σ2
α + µ2

α

)
−
µβµα

σ2
β

+
µ2
α

σ2
α

+
µ2
β

2σ2
β

− µ2
α

2σ2
α

+ log
(σβ
σα

)
=

σ2
α

2σ2
β

− 1

2
+

µ2
α

2σ2
β

− µ2
α

2σ2
α
−
µβµα

σ2
β

+
µ2
α

2σ2
α

+
µ2
β

2σ2
β

+ log
(σβ
σα

)
=

1

2

(
2 log

(σβ
σα

)
+

(
µα − µβ

)2
σ2
β

+
σ2
α

σ2
β

− 1

)
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Appendix B

To compute the geodesics of a metric gµνdxνdxµ, we compute the Christo�el symobols according to the
formula,

Γλµv =
1

2
gλσ (∂µgσv + ∂vgσµ − ∂σgµv) ,

where gλσ is the inverse of the metric matrix. Then using this expression the geodesic equation,

d2xα

dτ2
= −Γαβγ

dxβ

dτ

dxγ

dτ

For our the KL induced-metric in the coordinates (µ, σ)

gµν =

(
1

2σ2 0

0 1
σ2

)

The non-zero Christo�el symbols are

Γ2,1
1 =

−1

σ
, Γ1,1

2 =
1

2σ
, Γ2,2

2 =
−1

σ
.

Hence the Geodesic equations are,

d2µ

dτ2
=

2

σ

dµ

dτ

dσ

dτ
,

d2σ

dτ2
=
−(µ2 − 2σ2)

2σ
.

Solving these coupled equations [40] gives the Figure 5.
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Appendix C

As the simplest example,

ρα(x, t) =
1

(4πt)1/2
e

(
−|x−s|2

4t

)
, t > 0

∂ρα
∂t

=
1

(4πt)1/2
e

(
−|x−s|2

4t

)(
−1

2t
+
|x− s|2

4t2

)

Now,

1

ρα(t)

(
∂ρα
∂t

)2

=
1

(4πt)1/2
e

(
−|x−s|2

4t

)(
−1

2t
+
|x− s|2

4t2

)2

=
1

(4πt)1/2
e

(
−|x−s|2

4t

)(
1

4t2
+
|x− s|2

4t3
+
|x− s|4

16t4

)

Hence,

‖α(t)‖2 =

∫
R

1

(4πt)1/2
e

(
−|x−s|2

4t

)(
1

4t2
− |x− s|2

4t3
+
|x− s|4

16t4

)
dx

=
1

4t2
− 1

4t3

∫
R
|x− s|2 1

(4πt)1/2
e

(
−|x−s|2

4t

)
dx+

1

16t4

∫
R
|x− s|4 1

(4πt)1/2
e

(
−|x−s|2

4t

)
dx

=
1

4t2
− 1

4t3
2t+

1

16t4
12t2

=
1

2t2

Hence the norm of a vector

‖α(t)‖ =
1

t
√

2

The time where the hyperbola changes abrutly is

t = 2−
1
4 ≈ 0.84

Hence the �optimal� gaussian is

2t = σ2 =⇒ σ = 2
3
8 ≈ 1.3

More calculations...
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Appendix D

Lets take the difussion equation with β−1 = 1 and a(x) = ρ∞(x) with d
dx

(
p(x,t)
a(x)

)
= 0 on the boundary

∂ρα(x, t)

∂t
=

d

dx

(
a(x)

d

dx

(
ρα(x, t)

a(x)

))
=

d

dx

(
a(x)

(
−ρα(x, t)

a2(x)

da(x)

dx
+

1

a(x)

dρα(x, t)

dx

))
=

d

dx

(
−ρα(x, t)

a(x)

da(x)

dx
+
dρα(x, t)

dx

)

Now let's take a(x) = 1
σβ
√

2π
e
−1
2

(
x−µβ
σβ

)2

, hence,

∂ρα(x, t)

∂t
=

d

dx
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−ρα(x, t)e

1
2

(
x−µβ
σβ

)2

e
−1
2

(
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)2

−2

2

(
x− µβ
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)
1

σβ
+
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dx

)

=
1

σβ

d

dx
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x− µβ
σβ

))
ρα(x, t) +

1

σβ

(
x− µβ
σβ

)
dρα(x, t)

dx
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d2ρα(x, t)

dx2

=
1

σ2
β

ρα(x, t) +
1

σβ

(
x− µβ
σβ

)
dρα(x, t)

dx
+
d2ρα(x, t)

dx2

with d
dx

(
ρα(x, t)e

1
2

(
x−µβ
σβ

)2)
= 0 on the boundary. Now using the ansatz [37]

ρα(x, t) =
1

σ(t)
√

2π
e
−1
2

(
x−µ(t)
σ(t)

)2
,

hence we �nd,

∂ρα(x, t)
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=

−1

σ(t)

1

σ(t)
√

2π
e
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2

(
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1
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e
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Doing some algebra,

−σ′(t)
σ(t)

+
−2

2

(
x− µ(t)

σ(t)

)(
−µ′(t)σ(t)− σ′(t)(x− µ(t))
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1
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2
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σ(t)

)
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)
1
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)2
1
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Multiplying by σ(t)3,

−σ′(t)σ(t)3 − σ(t) (x− µ(t))
(
−µ′(t)σ(t)− σ′(t)(x− µ(t))

)
=

σ(t)4

σ2
β

− (x− µ(t))σ(t)2

σβ

(
x− µβ
σβ

)
− σ(t)2 + (x− µ(t))2

−σ′(t)σ(t)3 + µ′(t)σ(t)2 (x− µ(t)) + σ(t)σ′(t) (x− µ(t))2 =
σ(t)4

σ2
β

− (x− µ(t))σ(t)2

σβ

(
x− µβ
σβ

)
− σ(t)2 + (x− µ(t))2

Gathering the terms for each power of x

0 =

(
−1 +

σ(t)2

σ2
β

+ σ′(t)σ(t)

)
x2 +

(
µ′(t)σ(t)2 − 2µ(t)σ(t)σ′(t) + 2µ(t)− σ(t)2

σ2
β

(µ(t) + µβ)

)
x.

+

(
−σ(t)4

σ2
β

+ σ(t)2 − σ′(t)σ(t)3 − µ(t)µ′(t)σ(t)2 + σ(t)σ′(t)µ(t)2 − µ(t)2 +
σ(t)2µ(t)µβ

σ2
β

)

Now we obtain,

−1 +
σ(t)2

σ2
β

+ σ′(t)σ(t) = 0

µ′(t)σ(t)2 − 2µ(t)σ(t)σ′(t) + 2µ(t)− σ(t)2

σ2
β

(µ(t) + µβ) = 0

−µ(t)µ′(t)σ(t)2 + σ(t)σ′(t)µ(t)2 − µ(t)2 +
σ(t)2µ(t)µβ

σ2
β

= 0

Now we see that the second line can be reduced to,

µ′(t)σ(t)2 + 2µ(t)

(
−1 +

σ(t)2

σ2
β

)
+ 2µ(t)− σ(t)2

σ2
β

(µ(t) + µβ) = 0

µ′(t)σ(t)2 − σ(t)2

σ2
β

(−µ(t) + µβ) = 0

The last line also is reduced to an identity,

−µ(t)

(
σ(t)2

σ2
β

(−µ(t) + µβ)

)
+

(
1− σ(t)2

σ2
β

)
µ(t)2 − µ(t)2 +

σ(t)2µ(t)µβ

σ2
β

= 0

Hence the two coupled equations are

−1 +
σ(t)2

σ2
β

+ σ′(t)σ(t) = 0

µ′(t)− 1

σ2
β

(−µ(t) + µβ) = 0
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